top of page

GreenFridays4Future Chat Space

Public·19 members

Alkalating Agent PATCHED

Chloroplastic respiration was monitored by measuring (14)CO(2) from (14)C glucose in the darkened Chlamydomonas reinhardtii F-60 chloroplast. The patterns of (14)CO(2) evolution from labeled glucose in the absence and presence of the inhibitors iodoacetamide, glycolate-2-phosphate, and phosphoenolpyruvate were those expected from the oxidative pentose phosphate cycle and glycolysis. The K(m) for glucose was 56 micromolar and for MgATP was 200 micromolar. Release of (14)CO(2) was inhibited by phloretin and inorganic phosphate. Comparing the inhibition of CO(2) evolution generated by pH 7.5 with respect to pH 8.2 (optimum) in chloroplasts given C-1, C-2, and C-6 labeled glucose indicated that a suboptimum pH affects the recycling of the pentose phosphate intermediates to a greater extent than CO(2) evolution from C-1 of glucose. Respiratory inhibition by pH 7.5 in the darkened chloroplast was alleviated by NH(4)Cl and KCl (stromal alkalating agents), iodoacetamide (an inhibitor of glyceraldehyde 3-phosphate dehydrogenase), or phosphoenolpyruvate (an inhibitor of phosphofructokinase). It is concluded that the site which primarily mediates respiration in the darkened Chlamydomonas chloroplast is the fructose-1,6-bisphosphatase/phosphofructokinase junction. The respiratory pathways described here can account for the total oxidation of a hexose to CO(2) and for interactions between carbohydrate metabolism and the oxyhydrogen reaction in algal cells adapted to a hydrogen metabolism.

alkalating agent


Before their use in chemotherapy, alkylating agents were better known for their use as sulfur mustard, ("mustard gas") and related chemical weapons in World War I. The nitrogen mustards were the first alkylating agents used medically, as well as the first modern cancer chemotherapies. Goodman, Gilman, and others began studying nitrogen mustards at Yale in 1942, and, following the sometimes dramatic but highly variable responses of experimental tumors in mice to treatment, these agents were first tested in humans late that year. Use of methyl bis (B-chloroethyl)emine hydrochloride (mechlorethamine, mustine) and tris (B-chloroethy) amine hydrochloride for Hodgkin's disease lymphosarcoma, leukemia, and other malignancies resulted in striking but temporary dissolution of tumor masses. Because of secrecy surrounding the war gas program, these results were not published until 1946.[2] These publications spurred rapid advancement in the previously non-existent field of cancer chemotherapy, and a wealth of new alkylating agents with therapeutic effect were discovered over the following two decades.[3]

Some alkylating agents are active under conditions present in cells; and the same mechanism that makes them toxic allows them to be used as anti-cancer drugs. They stop tumor growth by crosslinking guanine nucleobases in DNA double-helix strands, directly attacking DNA. This makes the strands unable to uncoil and separate. As this is necessary in DNA replication, the cells can no longer divide. These drugs act nonspecifically.

Dialkylating agents can react with two different 7-N-guanine residues, and, if these are in different strands of DNA, the result is cross-linkage of the DNA strands, which prevents uncoiling of the DNA double helix. If the two guanine residues are in the same strand, the result is called limpet attachment of the drug molecule to the DNA. Busulfan is an example of a dialkylating agent: it is the methanesulfonate diester of 1,4-butanediol. Methanesulfonate can be eliminated as a leaving group. Both ends of the molecule can be attacked by DNA bases, producing a butylene crosslink between two different bases.

Many of the agents are known as "classical alkylating agents". These include true alkyl groups, and have been known for a longer time than some of the other alkylating agents. Examples include melphalan and chlorambucil.[5]

Platinum-based chemotherapeutic drugs (termed platinum analogues) act in a similar manner. These agents do not have an alkyl group, but nevertheless damage DNA.[7] They permanently coordinate to DNA to interfere with DNA repair, so they are sometimes described as "alkylating-like".

Alkylating antineoplastic agents have limitations. Their functionality has been found to be limited when in the presence of the DNA-repair enzyme O-6-methylguanine-DNA methyltransferase (MGMT). Cross-linking of double-stranded DNA by alkylating agents is inhibited by the cellular DNA-repair mechanism, MGMT. If the MGMT promoter region is methylated, the cells no longer produce MGMT, and are therefore more responsive to alkylating agents. Methylation of the MGMT promoter in gliomas is a useful predictor of the responsiveness of tumors to alkylating agents.[14] 041b061a72


Welcome to the group! You can connect with other members, ge...
bottom of page